Nanotube Circuits Design


Development of flexible electronics has recently focused on organic molecules because, unlike silicon, they are compatible with bendable plastic substrates. Flexible electronics have potential in such applications as low-power electronic newspapers or PDAs that roll up into the size and shape of a pen. The problem with existing organic-electronic devices, however, is that "they aren't well developed for long-term reliability, and they perform far worse than silicon," says John A. Rogers, an engineering professor at UIUC and co-author of the Nature paper.

Carbon-nanotube networks, on the other hand, combine the performance of silicon with the flexibility of organic films on plastic. Rogers says that the speed of the nanotube device compares favorably with the speed of commercially used single-crystal silicon circuits. The transistors can also switch between on and off states in the range of several kilohertz, which is similar to the range of those used for liquid crystal displays and radio frequency identification (RFID) sensors. However, the on-off current ratio for carbon nanotubes is still a few orders of magnitude lower than that for silicon transistors.

For more information Click Here

Posted in |

0 comments: